Transformational design of distributed systems

S. Fickas & D. Tiktin
Dept. of Computer Science
University of Oregon, Eugene OR 97403
{fickas,tiktin }@cs.uoregon.edu

Our position is founded upon three premises. The
first is that transformational techniques can provide
useful support io the design of distributed systems.
In this approach, design commences with an ideal-
ized specification (expressed in a non-distributed fash-
ion), and terminates with a distributed implementa-
tion that exhibits the same, or acceptably close, func-
tionality as the specification. The design steps are
accomplished by transformations; these encode com-
monly recurring means of translating uses of specifica-
tion concepts into equivalent (or, more typically, ac-
ceptably close to equivalent) implementations. These
transformations must deal with the concerns that
dominate distributed systems, namely global vs. lo-
cal information and control, overall system reliability
in the face of failure of individual components and/or
communication between them, security /privacy needs,
and system-wide efficiency.

We recognize that we can rarely expect to realize
a perfect (totally reliable, fully secure, maximally ef-
ficient) implementation. The concerns of distributed
systems combine to make this all the more unattain-
able. This leads to our second premise, the need to em-
ploy imperfect transformations that potentially com-
promise or approximate the specification in the course
of design; in this respect we deviate from the main-
stream approach to program transformation.

Furthermore, distributed systems are often fielded
in a highly variable and unpredictable environment.
This, combined with the use of imperfect transforma-
tions, motivates our third premise, that distributed
systems must oflen be self-monitoring. By this we
mean that the system monitor its behavior and per-
formance during its interactions with its environment.
Such monitoring may reveal whether, in what form,
under what conditions, and how frequently, the im-
plementation is not completely faithful to the ideal-
ized specification. This information can be provided
to the designer, who may choose to redesign the sys-
tem in light of the additional understanding gained
from this information, to the users, who may need to

0-8186-5390-6/94 $3.00 © 1994 IEEE

214

M. S. Feather & D. Cohen
USC/ISI, 4676 Admiralty Way
Marina del Rey CA 90292
{feather,donc}@Qisi.edu

be alerted when they are using the system in a manner
for which its present design is not well suited, and/or
to the system itself, so that it can adapt its own be-
havior accordingly. Such self-monitoring is best in-
troduced during the design process itself, rather than
being tacked on after design in an ad-hoc manner. We
believe this not only because we think that monitor-
ing, like any other function, is amenable to transfor-
mational design, but also because of the especially
close intertwining between the compromises and ap-
proximations that are made during the design, and
the need to monitor the need for and/or consequences
of such design steps.

Our studies have focussed on the early stages of sys-
tem design, during which the overall architecture and
interfaces are established. In particular, we consider
alternative assignments of ‘responsibility’ for invari-
ants to various components of the system. Responsi-
bility for an invariant implies acting so as to ensure its
satisfaction. In a distributed setting, this frequently
induces the need to cause or inhibit non-local actions,
and to access non-local information. These needs in
turn specify and motivate the development of inter-
faces between components. The concepts of respon-
sibility, information and influence also serve to char-
acterize the compromises and approximations (e.g., a
central component specified to have knowledge of the
current status of its neighbors might be approximated
in a design that has those neighbors inform the cen-
tral component of changes to their status; thus the
central component will not necessarily have current
knowledge, but instead is kept as up-to-date as possi-
ble, modulo communication delays).

We look to traditional concurrency work to provide
implementations, analyses and verifications of these
non-local influence and information accesses. By en-
coding these implementations and the responsibility
manipulations as transformations, we expect that a
designer will be able to readily explore the space of
possible designs, and rapidly carry through any cho-
sen design path from specification to implementation.

